

Threaded-Body Cylinder

single acting with spring return and double wiper max. operating pressure 500 bar

Version	Version	Version		
without female thread	with female thread	with swivel contact bolt		
e e e e e e e e e e e e e e e e e e e	Sw 2 Sealing ring included in t delivery	22 22 33 32 22		

Description

These threaded-body cylinders can be threaded directly into tapped holes in the fixture down to the hex-section of the cylinder body. Spacings between cylinders can be minimised when cylinders are arranged in a row, since the oil is fed through drilled passages in the fixture. Sealing is made with the supplied sealing ring at the bottom of the location hole.

The plunger construction impedes penetration of fluids into the spring area.

The double wiper protects the piston guide and in combination with the piston rod seal provides a seal with very little leakage.

Material

Piston material: casehardening steel, hardened Cylinder body: free-cutting steel

Important notes!

Threaded-body cylinders must not be subjected to a load in retracted position.

Operating conditions, tolerances and other data see data sheet A 0.100.

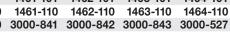
Accessories and application examples

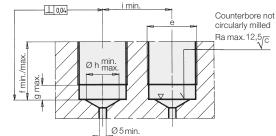
see reverse page

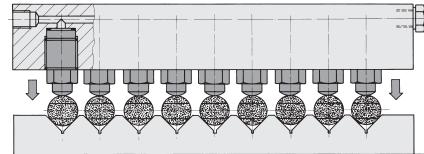
Piston Ø d		[mm]	12	16	20	25	32
Stroke		[mm]	10	12	15	16	20
Clamping force at	100 bar	[kN]	1.1	2.0	3.1	4.9	8
Ciamping loice at	500 bar	[kN]	5.7	10.1	15.7	24.6	40
Spring return force, r	nin.	[N]	28	50	78	123	200
Min. operating press	ure	[bar]	10	10	10	10	10
Oil volume per 10 mr	m stroke	[cm ³]	1.13	2.01	3.14	4.91	8.04
a1		[mm]	37	45.5	55	58	85
a2		[mm]	44	51.5	64.5	67	96
a3		[mm]	44.5	53	68.5	71	98
a4		[mm]	25	33	42	44.5	71.5
b		[mm]	7	8	8	11	12
c1		[mm]	3	3.5	4	5	7
c2		[mm]	10	9.5	13.5	14	18
c3		[mm]	10.5	11	17.5	18	20
Ød		[mm]	12	16	20	25	32
е		[mm]	M 22x1.5	M 26x1.5	M 30x1.5	M 38x1.5	M 48x1.5
f min./max.		[mm]	16/24.5	20/32.5	24/41.5	28/44	42/70
g max.		[mm]	8	9	9	11	13
Ø h min./max.		[mm]	9/12	12/16	14/20	18/25	22/32
i min.		[mm]	31	34	40	52	62
k1		[mm]	38	46.5	56	59.5	87
k2		[mm]	45	52.5	65.5	68.5	98
k3		[mm]	45.5	54	69.5	72.5	100
ØI		[mm]	11	15	19	23	30
m		[mm]	5.5	5.5	6	7	9
n		[mm]	M 6	M 6	M 8	M 8	M 12
0		[mm]	6	6	8	8	12
Øp		[mm]	7.2	7.2	10.5	10.5	20.0
R		[mm]	20	25	32	40	50
SW 1		[mm]	24	27	32	41	50
SW 2		[mm]	10	13	17	19	24
Seating torque		[Nm]	40	50	60	80	225
Weight		[kg]	0.08	0.15	0.22	0.38	0.97
Part no.							
Version without fe	male thread		1460-100	1461-100	1462-100	1463-100	1464-100

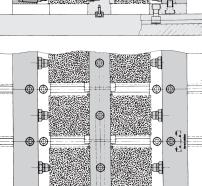
Version with female thread Version with swivel contact bolt Additional seal

Porting details


1460-101 1460-110




3000-840



1464-110

Application examples

Workholding with the use of reversing levers is particularly suited for workpieces which have to be clamped high above the fixture base plate. The force-loop closed within a limited fixture component space eliminates bending forces from entering the fixture base plate. The reversing lever allows easy adaptation of the lever ratio to the clamping force required. The opposite figure shows a multiple clamping fixture for clamping of small parts. The cylinders can be arranged in a clamping bar or yoke.

٢

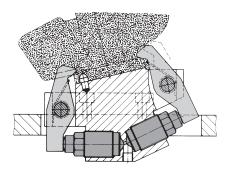
0

•

 \odot

 \odot

 \odot


⊕

¢

 \odot

۲

ł

This example shows a detail of a clamping fixture for exhaust manifolds, where under limited space conditions the use of reversing levers allows clamping of workpieces with intricate contours.

The above multiple clamping fixture is equipped with threaded-body cylinders with swivel contact bolts. The 3° incline of the threaded-body cylinders effects a low-clamping force of approx. 5% of the clamping force. On plane clamping surfaces swivel contact bolts obtain little surface pressure on the effective points.

the use of reversing levers is or workpieces which have to above the fixture base plate.

2